Abstract

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most prevalent forms of the chronic and progressive pathological condition known as cardiomyopathy. These diseases have different aetiologies; however, they share the feature of haemodynamic abnormalities, which is mainly due to dysfunction in the contractile proteins that make up the contractile unit known as the sarcomere. To date, pharmacological treatment options are not disease-specific and rather focus on managing the symptoms, without addressing the disease mechanism. Earliest attempts at improving cardiac contractility by modulating the sarcomere indirectly (inotropes) resulted in unwanted effects. In contrast, targeting the sarcomere directly, aided by high-throughput screening systems, could identify small molecules with a superior therapeutic value in cardiac muscle disorders. Herein, an extensive literature review of 21 small molecules directed to five different targets was conducted. A simple scoring system was created to assess the suitability of small molecules for therapy by evaluating them in eight different criteria. Most of the compounds failed due to lack of target specificity or poor physicochemical properties. Six compounds stood out, showing a potential therapeutic value in HCM, DCM or heart failure (HF). Omecamtiv Mecarbil and Danicamtiv (myosin activators), Mavacamten, CK-274 and MYK-581 (myosin inhibitors) and AMG 594 (Ca2+-sensitiser) are all small molecules that allosterically modulate troponin or myosin. Omecamtiv Mecarbil showed limited efficacy in phase III GALACTIC-HF trial, while, results from phase III EXPLORER-HCM trial were recently published, indicating that Mavacamten reduced left ventricular outflow tract (LVOT) obstruction and diastolic dysfunction and improved the health status of patients with HCM. A novel category of small molecules known as “recouplers” was reported to target a phenomenon termed uncoupling commonly found in familial cardiomyopathies but has not progressed beyond preclinical work. In conclusion, the contractile apparatus is a promising target for new drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.