Abstract

Mitochondria, as energy factories, participate in many metabolic processes and play vital roles in cell life. Most human diseases are caused by mitochondrial dysfunction, and mitochondrial temperature is an important indicator of mitochondrial function. Despite the biological importance of mitochondria, there are few tools for detecting changes in mitochondrial temperature in living organisms. Here, we report on a thermosensitive rhodamine B (RhB)-derived fluorogenic probe (RhBIV) that enables fluorescent labeling of cell mitochondria at concentrations as low as 1 μM. We demonstrate that this probe exhibits a temperature-dependent response in cell mitochondria. Furthermore, in mice, it has a long half-life (t1/2) and is primarily enriched in the liver. This unique thermosensitive probe offers a simple, nondestructive method for longitudinal monitoring of mitochondrial temperature both in vitro and in vivo to elucidate fundamental physiological and pathological processes related to mitochondrial function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.