Abstract

Malignant melanoma is the most aggressive and life-threatening skin cancer. Melanoma develops in melanocytes and is characterized by a very high tendency to spread to other parts of the body. Its pathogenesis depends on DNA mutations leading to the activation of oncogenes or to the inactivation of suppressor genes. The identification of misregulations in intracellular signal transduction pathways has provided an opportunity for the development of mutation-specific inhibitors, which specifically target the mutated signaling cascades. Over the last few years, clinical trials with MAPK pathway inhibitors have shown significant clinical activity in melanoma; however, their efficacy is limited due to the onset of acquired resistance. This has prompted a large set of preclinical studies looking at new approaches of pathway- or target-specific inhibitors. This review gives an overview of the latest developments of small molecule targeting multiple molecular pathways in both preclinical and clinical melanoma settings, with particular emphasis on additional strategies to tackle the reduced responsiveness to inhibitor treatment as possible future directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.