Abstract

Despite the well-established role of oxidative stress in the pathogenesis of age-related macular degeneration (AMD), the mechanism underlying phototoxicity remains unclear. Herein, we used a drug repurposing approach to isolate an FDA-approved drug that blocks the aggregation of the photoinducible major fluorophore of lipofuscin, the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). Our fluorescence-based screening combined with dynamic light scattering (DLS) analysis led to the identification of entacapone as a potent inhibitor of A2E fluorescence and aggregation. The entacapone-mediated inhibition of A2E aggregation blocks its photodegradation and offers photoprotection in A2E-loaded retinal pigment epithelial (RPE) cells exposed to blue light. In-depth mechanistic analysis suggests that entacapone prevents the conversion of toxic aggregates by redirecting A2E into off-pathway oligomers. These findings provide evidence that aggregation contributes to the phototoxicity of A2E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.