Abstract

Odorant receptors are the largest subfamily of G protein-coupled receptors and were recently suggested to play critical roles in nonolfactory tissues. However, the expression and function of odorant receptors in astrocytes, the most abundant cells in the brain, are not well known. We demonstrate that Olfr920 is highly expressed and propose that it functions as a short-chain fatty acid sensor in primary cortical astrocytes. The short-chain fatty acid isobutyric acid (IBA) was identified via a luciferase assay as an Olfr920 ligand. We show that IBA activates the Gs protein-adenylyl cyclase-cAMP pathway via Olfr920 in primary cortical astrocytes by using cAMP and knockdown analyses. In addition, IBA reduces lipopolysaccharide-induced glial fibrillary acidic protein expression in reactive astrocytes. These results suggest that astrocytic Olfr920 is a potential novel target for increased reactive astrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.