Abstract

We have performed extensive studies of a three-component microemulsion system composed of AOT-water-decane (AOT=sodium-bis-ethylhexyl-sulfosuccinate is an ionic surfactant) using small-angle light scattering (SALS). The small-angle scattering intensities are measured in the angular interval 0.001–0.1 radians, corresponding to a Bragg wave number range of 0.14 μm−1<Q<<1.4 μm−1. The measurements were made by changing temperature and volume fraction ϕ of the dispersed phase (water + AOT) in the range 0.05<ϕ<0.75. All samples have a fixed water-to-AOT molar ratio,w=[water]/[AOT]=40.8, in order to keep the same average droplet size in the stable one-phase region. With the SALS technique, we have been able to observe all the phase boundaries of a very complex phase diagram with a percolation line and many structural organizations within it. We observe at the percolation transition threshold, a scaling behavior of the intensity data. This behavior is a consequence of a clustering among microemulsion droplets near the percolation threshold. In addition, we describe in detail a structural transition from a droplet microemulsion to a bicontinuous one as suggested by a recent small-angle neutron scattering experiment. The loci of this transition are located several degrees above the percolation temperatures and are coincident with the maxima previously observed in shear viscosity. From the data analysis, we show that both the percolation phenomenon and this novel structural transition are derived from a large-scale aggregation between microemulsion droplets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.