Abstract

This paper presents an existence theory for small-amplitude Stokes and solitary-wave solutions to the classical water-wave problem in the absence of surface tension and with an arbitrary distribution of vorticity. The hydrodynamic problem is formulated as an infinite-dimensional Hamiltonian system in which the horizontal spatial coordinate is the time-like variable. A centre-manifold technique is used to reduce the system to a locally equivalent Hamiltonian system with one degree of freedom for values of a dimensionless parameter α near its critical value α ⋆ . The phase portrait of the reduced system contains a homoclinic orbit for α < α ⋆ and a family of periodic orbits for α > α ⋆ ; the corresponding solutions of the water-wave problem are respectively a solitary wave of elevation and a family of Stokes waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.