Abstract
Transforming growth factor-beta (TGF-beta) stimulation of Type I collagen gene (COL1A2) transcription involves the Smad signal transduction pathway, but the mechanisms of Smad-mediated transcriptional activation are not fully understood. We now demonstrate that the ubiquitous transcriptional coactivators p300 and CREB-binding protein (CBP) enhanced basal as well as TGF-beta- or Smad3-induced COL1A2 promoter activity, and stimulated the expression of endogenous Type I collagen. The adenoviral E1A oncoprotein abrogated stimulation of COL1A2 activity in transfected fibroblasts, and reduced the basal level of collagen gene expression. This effect was due to specific interaction of E1A with cellular p300/CBP because (a) a mutant form of E1A defective in p300 binding failed to abrogate stimulation, and (b) forced expression of p300/CBP restored the ability of TGF-beta to stimulate COL1A2 promoter activity in the presence of E1A. The effect of p300 on COL1A2 transcription appeared to be due, in part, to its intrinsic acetyltransferase activity, as stimulation induced by a histone acetyltransferase-deficient mutant p300 was substantially reduced. Transactivation of COL1A2 by p300 involved the Smad signaling pathway, as Smad4-deficient cells failed to respond to p300, and stimulation was rescued by overexpression of Smad4. Furthermore, minimal constructs containing only the Smad-binding CAGACA element of COL1A2 were transactivated by p300 in the presence of TGF-beta. These results indicate, for the first time, that the multifunctional p300/CBP coactivators play a major role in Smad-dependent TGF-beta stimulation of collagen gene expression in fibroblasts. Oncogene (2000) 19, 3546 - 3555
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.