Abstract

This study established two mesophilic anaerobic digesters to ascertain the microbial dynamics and variation characteristics of antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD) with high concentration of antibiotics. System parameters, microbial community, ARGs (tetA, tetM, tetW, sulI, sulII) and integrase gene of class 1 (intI1) were analyzed. General performance of AD showed methane production was inhibited by 17.1% under the pressure of antibiotics. Microbial 16S rRNA high-throughput sequencing results showed the richness of microbial community decreased, but a higher diversity was found with antibiotics added. Furthermore, microbial community structure at genus level was significantly changed. Real-time quantitative PCR of several target genes demonstrated that the adjunction of high concentration of antibiotics exerted a significant induction influence on ARGs, however, the abundance of intI1 decreased observably. Correlation analysis showed intI1 only played a small role in ARGs’ transfer during AD, change of potential hosts was the key factor instead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.