Abstract
Although the essential role of the adaptor protein SLP-65 in pre-B cell differentiation is established, the molecular mechanism underlying its function is poorly understood. In this study, we uncover a link between SLP-65-dependent signaling and the phosphoinositide-3-OH kinase (PI(3)K)-protein kinase B (PKB)-Foxo pathway. We show that the forkhead box transcription factor Foxo3a promotes light chain rearrangement in pre-B cells. Our data suggest that PKB suppresses light chain recombination by phosphorylating Foxo proteins, whereas reconstitution of SLP-65 function counteracts PKB activation and promotes Foxo3a and Foxo1 activity in pre-B cells. Together, these data illuminate a molecular function of SLP-65 and identify a key role for Foxo proteins in the regulation of light chain recombination, receptor editing and B cell selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.