Abstract

This study examines the physical conditions of the outer solar corona in order to identify the regions where the slow solar wind is accelerated and to investigate the latitudinal transition from slow to fast wind during the minimum of the solar cycle. The analysis is based on observations of six streamers obtained during the years of solar minimum, 1996 and 1997, with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard the Solar and Heliospheric Observatory (SOHO). The outflow velocity of the oxygen ions and the electron density of the coronal plasma are determined in altitude ranging from 1.5 to 3.5 solar radii (). The adopted diagnostic method, based on spectroscopic analysis of the O VI 1032 and 1038 Å lines, fully accounts for the large expansion factor of the magnetic field lines expected in the regions surrounding the streamers. The analysis leads to the conclusion that the slow coronal wind is observed (i) in the region external to and running along the streamer boundary; and (ii) in the region above the streamer core beyond 2.7 , where the transition between closed and open magnetic field lines takes place and the heliospheric current sheet forms. Regions in the immediate vicinity of the streamer boundary can be identified with the edges of the large polar coronal holes that characterize solar minimum. Results point to gradual variations of the properties of a coronal hole from the streamer boundary to its polar core, most likely related to the topology of the coronal magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.