Abstract

In this paper, a slow-wave transmission line implemented in coplanar waveguide technology, based on simultaneous inductive and capacitive loading, is presented for the first time. The shunt capacitors are achieved by periodically etching transverse strips in the back substrate side, connected to the central strip through metallic vias. The series inductors are implemented by etching rectangular slots in the ground plane. The effect of these reactive elements is an enhancement of the effective shunt capacitance and series inductance of the line, leading to a significant reduction of the phase velocity (slow-wave effect). Consequently, the guided wavelength is also reduced, and these lines can be applied to the miniaturization of microwave components. Moreover, due to periodicity, these artificial lines exhibit stop bands (Bragg effect) useful for spurious or harmonic suppression. A compact harmonic suppressed power splitter, based on a slow wave 35.35 Ω impedance inverter, has been designed and fabricated in order to demonstrate the potential of the proposed approach. The length of the inverter is 48% the length of the conventional counterpart, and measured power splitting at the first (3f0) and second (5f0) harmonic frequencies is rejected more than 49 and 23 dB, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.