Abstract
The insulating pyrochlore compound Nd2Sn2O7 has been shown to undergo a second order magnetic phase transition at Tc ~ 0.91 K to a noncoplanar all-in--all-out magnetic structure of the Nd3+ magnetic moments. An anomalously slow paramagnetic spin dynamics has been evidenced from neutron backscattering and muon spin relaxation (muSR). In the case of muSR this has been revealed through the strong effect of a 50 mT longitudinal field on the spin-lattice relaxation rate. Here, motivated by a recent successful work performed for Yb2Ti2O7 and Yb2Sn2O7, analyzing the shape of the muSR longitudinal polarization function, we substantiate the existence of extremely slow paramagnetic spin dynamics in the microsecond time range for Nd2Sn2O7. Between 1.7 and 7 K, this time scale is temperature independent. This suggests a double spin-flip tunneling relaxation mechanism to be at play, probably involving spin substructures such as tetrahedra. Unexpectedly, the standard deviation of the field distribution at the muon site increases as the system is cooled. This exotic spin dynamics is in sharp contrast with the dynamics above 100 K which is driven by the Orbach relaxation mechanism involving single Nd3+ magnetic moments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.