Abstract

This study investigated the feasibility of a slow-release inoculation approach as a bioaugmentation strategy for the degradation of lindane (gamma-hexachlorocyclohexane [gamma-HCH]). Slow-release inoculation of Sphingomonas sp. gamma 1-7 was established in both liquid and soil slurry microcosms using open-ended silicone tubes in which the bacteria are encapsulated in a protective nutrient-rich matrix. The capacity of the encapsulated cells to degrade lindane under aerobic conditions was evaluated in comparison with inoculation of free-living cells. Encapsulation of cells in tubes caused the removal of lindane by adsorption to the silicone tubes but also ensured prolonged biodegradation activity. Lindane degradation persisted 2.2 and 1.4 times longer for liquid and soil slurry microcosms, respectively, than that for inoculation with free cells. While inoculation of free-living cells led to a loss in lindane-degrading activity in limited time intervals, encapsulation in tubes allowed for a more stable actively degrading community. The loss in degrading activity was linked to the loss of the linA gene, encoding gamma-HCH dehydrochlorinase (LinA), which is involved in the initial steps of the lindane degradation pathway. This work shows that a slow-release inoculation approach using a catabolic strain encapsulated in open-ended tubes is a promising bioaugmentation tool for contaminated sites, as it can enhance pollutant removal and can prolong the degrading activity in comparison with traditional inoculation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.