Abstract

We have studied the drag force acting on an object moving with low velocity through a granular medium. Although the drag force is a dynamic quantity, its behavior in this regime is dominated by the inhomogeneous distribution of stress in static granular media. We find experimentally that the drag force on a vertical cylinder is linearly dependent on the cylinder diameter, quadratically dependent on the depth of insertion, and independent of velocity. An accompanying analytical calculation based on the static distribution of forces arrives at the same result, demonstrating that the local theory of stress propagation in static granular media can be used to predict this bulk dynamic property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.