Abstract

Understanding the mechanics and dynamics of active matter at high density is indispensable to a range of physical and biological processes such as swarm dynamics, tissue formation and cancer metastasis. Here, we study the dynamics and mechanics of an MCF-10A epithelial cell monolayer on the multi-cellular and single-cell scales and over a wide density range. We show that the dynamics and Young's modulus of the monolayer are spatially heterogeneous on the multi-cellular scale. With increasing cell density, the monolayer approached kinetic arrest and the Young's modulus scaled critically. On the single-cell scale, as the cell density increased, cells were intermittently trapped in cages formed by their neighbors and their motion evolved from a ballistic motion to a sub-diffusive motion. Furthermore, the relaxation time and inverse self-diffusivity increased exponentially with the cell density. These findings provide a mechanism for long-ranged mechanical stress propagation, tissue remodeling and patterning at very high cell densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.