Abstract
Slope stability is a major safety concern of rockfill embankments. Since rockfills are incohesive materials, only friction angle is considered as a shear strength parameter in the slope stability analysis of rockfill embankments. Recently, it was found that confining pressure can significantly affect the mean value and variance of the friction angle of rockfills. Since the confining pressure spatially varies within a rockfill embankment, the effect of stress-dependent spatial variability in the friction angle of rockfills should be investigated for slope stability evaluation of rockfill embankments. In the framework of the Limit Equilibrium Method (LEM), an approach is proposed for the slope stability analysis of rockfill embankments considering the stress-dependent spatial variability in the friction angle. The safety factors of slope stability are computed with variable values of the friction angle at the bases of slices which are determined by the stress-dependent mean value and variance of the friction angle of rockfills. The slope stability of a homogeneous rockfill embankment is analyzed to illustrate the proposed approach, and a parametric analysis is carried out to explore the effect of variation in the parameters of the variance function of friction angle on slope stability. The illustrative example demonstrates that the stress-dependent spatial variability of friction angle along the slip surface is obvious and is affected by the location of the slip surface and the loading condition. The effects of the stress-dependent spatial variability of the friction angle on the slope stability of high rockfill embankments should be considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.