Abstract

Stress-laminated timber bridge decks consist of several sawn timber beams or glue-laminated (glulam) beams held together with prestressed steel bars. Frictional shear stresses between the beams transfer loads between individual beams. Because the vertical (transverse) shear stress component has been extensively discussed, this paper considers the horizontal shear stress. A full-scale test and corresponding finite element simulations for a specific load case confirmed that horizontal slip occurred between beams. Using an elastic-plastic material model, the finite element model handled both vertical and horizontal frictional slip. The results showed that the finite element model gives reliable results and that slip in general leads to permanent deformations, which may increase with load cycling. Horizontal slip between beams over a large area of the bridge deck begins at a low load, resulting in a redistribution of load between beams, but does not lead to immediate failure. Vertical slip between beams starts at a high load close to the load application point and leads to failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.