Abstract

Shade is widespread in agricultural production and affects lignin biosynthesis and lodging resistance of crops. We explored the effects of shade intensity on lignin biosynthesis and lodging resistance at the physiological and molecular levels in two soybean cultivars (Nandou12 and E93) with different shade tolerance under four progressively severe shade treatments, S0–S3 (S0: no shade, S1: slight shade, S2: moderate shade, S3: heavy shade). Our results showed no significant difference in breaking strength of the two cultivars under S1 and S0 treatments, with no prominent decrease in the lodging resistance index. The activity of lignin biosynthesis rate-limiting enzymes phenylalanine ammonia-lyase (PAL), peroxidase and cinnamyl alcohol dehydrogenase (CAD), which were considerably related to the two lodging resistance indexes above, was not significantly decreased by slight shade, while 4-coumaric acid ligase (4CL) activity was increased. Most genes involved in lignin biosynthesis were not significantly down-regulated by slight shade (S1) compared to S0, while p-coumarate 3-hydroxylase (C3H), 4-coumaric acid ligase (4CL) and laccase (LAC) genes were upregulated. Under heavy shade (S3), enzyme activity and gene expression associated with lignin synthesis in both soybean cultivars were strongly inhibited; moreover, stem mechanical strength and lodging resistance were remarkably decreased compared with those under S0. These physiological and molecular changes suggested that applicable shade levels do not significantly affect the mechanical strength and lodging resistance of soybean stem. Exploiting the lodging resistance potential of existing soybean cultivars was an effective and efficient way to address yield reduction caused by lodging in intercropped soybeans.

Highlights

  • Light is an indispensable but relatively difficult to control factor in agricultural production, because it mainly comes from solar radiation [1]

  • We explored the effects of shade intensity on lignin biosynthesis and lodging resistance in soybean at the physiological and molecular levels

  • Shade significantly affected stem strength and lodging resistance, which were related to soybean genotype and shade level

Read more

Summary

Introduction

Light is an indispensable but relatively difficult to control factor in agricultural production, because it mainly comes from solar radiation [1]. For this reason, meteorological factors determine the average annual amount of radiation in a specific region. Some areas lack light resources due to geographical factors. Shade environments are widely found in various cultivation systems: there is interspecies shading in the dense planting model [2] and there is strong intraspecies shading in the intercropping system [3]. In some interforest cropping systems, there are shade environments where the shorter plants cannot escape [4].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.