Abstract
Cobalt alloys are used in several industrial applications due to their good mechanical properties at high temperatures. During manufacturing of 13% Cr super martensitic stainless steel seamless tubes by Mannesmann process, the hot rolling guides made of cast Co30Cr19Fe alloy are currently used, but present severe wear, limiting their service life. Seeking an alternative, three cobalt-based coatings (Stellite 1, 6 and 12) were selected. These coatings were evaluated and compared with the alloy currently used by sliding wear tests performed at room temperature and at 500°C in a tribometer PLINT TE67 with pin-on-disc configuration, without lubrication and varying the normal load. The pin was made of 13% Cr super martensitic stainless steel. The discs were manufactured with cast Co30Cr19Fe alloy and some of them were coated by laser cladding process with Stellite alloys, that is, a total of four materials. The worn volume of the wear surface was analyzed by 3D profilometry. The micromechanisms were observed with a stereoscopic and scanning electron microscope. To assess the elemental composition of the wear track, analyses were performed using energy dispersive spectroscopy (EDS). The results indicate that the samples coated with Stellite presented better performance than the cast Co30Cr19Fe alloy. Among the coatings, the Stellite 1 showed the best wear resistance, both at room temperature and at 500°C. The Co30Cr19Fe, Stellite 6 and 12 alloys, presented predominantly plastic removal mechanisms. Whereas Stellite 1 presented micro-cutting and oxidative wear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.