Abstract

Inter-turn short-circuit (ITSC) faults on the induction machine has received much attention in the recent years. Early detection of such faults in wind turbine systems would allow to avoid fluctuation on wind power output and maintain the reliability level. In this paper, Sliding Mode Observers (SMO)-based fault detection and isolation method is developed for induction generator (IG)-based variable-speed grid-connected wind turbines. Firstly, the dynamic model of the wind turbine and IG was given and then, the control was made based on Maximum Power Point Tracking (MPPT) method. The IG closed-loop via Indirect Rotor Flux Oriented Control (IRFOC) scheme was also described. Hence, the performance of the wind turbine system and the stability of injected power to the grid were analyzed under the ITSC fault conditions. The control schemes were proved to be inherently unstable under the faulty conditions. Then, robust SMO were investigated to design an ITSC fault detection and isolation scheme. Finally, simulation results of ITSC detection and isolation in the variable-speed grid-connected wind turbine with affected IG confirm the theoretical development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.