Abstract

One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In other hands, precursors produce delayed neutrons which are most important in control of nuclear reactor, but xenon concentration & precursor density cannot be measured directly. In this paper, non-linear sliding mode observer which has the robust characteristics facing the parameters uncertainties and disturbances is proposed based on the two point nuclear reactor model to estimate the xenon concentration & delayed neutron precursor density of the Pressurized-Water Nuclear Reactor (PWR) using reactor power measurement. The stability analysis is given by means Lyapunov approach, thus the system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications. This estimation is done taking into account the effects of reactivity feedback due to temperature and xenon concentration. Simulation results clearly show that the sliding mode observer follows the actual system variables accurately and is satisfactory in the presence of the parameters uncertainties & disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.