Abstract
We study a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in a two-dimensional array in the absence of a magnetic field. We analyse whether the nearest-neighbour inter-wire interactions, stabilise the SLL phase. We construct an analogue of a Su–Schriefer–Heeger (SSH) model (allowing alternating couplings between wires). Calculating the scaling dimensions of the two most relevant perturbations, charge-density wave, and superconducting inter-wire couplings, but excluding the inter-wire single-particle hybridisation, we find a finite stability region for the SLL. It emerges due to the inter-wire forward scattering interaction, and remains stable up to a significant asymmetry between alternating couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.