Abstract

Coupling the spin Hall effect with novel degrees of freedom of electrons is central to the rich phenomena observed in condensed-matter physics. Here, using symmetry analysis and a low-energy k·p model, we report the sliding ferroelectricity engineered coupling between spin Hall effect and emerging layertronics, thereby generating the layer spin Hall effect (LSHE), in a 2D lattice. The physics is rooted in a pair of T-symmetry connected valleys, which experience spin splitting accompanied by large Berry curvature under spin-orbit coupling. The interaction between the out-of-plane ferroelectricity and electronic properties gives rise to the layer-locked Berry curvature and thus layer-polarized spin Hall effect (LP-SHE) in the bilayers. Such LP-SHE is strongly coupled with sliding ferroelectricity, enabling it to be ferroelectrically reversible. Using first-principles calculations, the mechanism is further demonstrated in a series of real bilayer systems, including MoS2, MoTe2, WSe2, MoSi2P4, and MoSi2As4. These phenomena and insights open a new direction for spin Hall effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.