Abstract

Many event-related functional magnetic resonance imaging paradigms performed so far have been designed to study a limited part of the brain with high temporal resolution. However, event-related paradigms can be exploratory, therefore requiring whole brain scans and so repetition times (TR) of several seconds. For these large TR values, the slice acquisition order may have an important effect on the detection of event-related activation. Indeed, when the scanning is interleaved, the temporal delay between the acquisition of two contiguous slices can reach a few seconds. During this time, the subject is likely to move, and the haemodynamic response will vary significantly. In this case, the interpolation applied between contiguous slices for motion correction induces a temporal smoothing between voxels that are spatially close but temporally sampled a few seconds apart. This should modify the frequency structure of the response and may impair the detection of short events. We, therefore tested the effect of three acquisition schemes (sequential, sequential with gap and interleaved, INT) at two repetition times (TR=3 and 6 s on six and seven subjects, respectively) on activation detection and frequency content in a visual motion event-related paradigm. Unexpectedly, for large TR (6 s), results were found in favour of the INT acquisition scheme (P<0.05). For smaller TR, no strong bias could be found. Generally, intra-subject variability (across acquisition schemes) is found to be much smaller than inter-subject variability, confirming the importance of multi-subjects analyses. Our study also shows that important physiological information is carried by high frequency components that should not be filtered out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.