Abstract

The present paper proves that a Sleptsov net (SN) is Turing-complete, that considerably improves, with a brief construct, the previous result that a strong SN is Turing-complete. Remind that, unlike Petri nets, an SN always fires enabled transitions at their maximal firing multiplicity, as a single step, leaving for a nondeterministic choice of which fireable transitions to fire. A strong SN restricts nondeterministic choice to firing only the transitions having the highest firing multiplicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.