Abstract

Sleep following learning facilitates the consolidation of memories. This effect has often been attributed to sleep-specific factors, such as the presence of sleep spindles or slow waves in the electroencephalogram (EEG). However, recent studies suggest that simply resting quietly while awake could confer a similar memory benefit. In the current study, we examined the effects of sleep, quiet rest, and active wakefulness on the consolidation of declarative and procedural memory. We hypothesized that sleep and eyes-closed quiet rest would both benefit memory compared with a period of active wakefulness. After completing a declarative and a procedural memory task, participants began a 30-min retention period with PSG (polysomnographic) monitoring, in which they either slept (n = 24), quietly rested with their eyes closed (n = 22), or completed a distractor task (n = 29). Following the retention period, participants were again tested on their memory for the two learning tasks. As hypothesized, sleep and quiet rest both led to better performance on the declarative and procedural memory tasks than did the distractor task. Moreover, the performance advantages conferred by rest were indistinguishable from those of sleep. These data suggest that neurobiology specific to sleep might not be necessary to induce the consolidation of memory, at least across very short retention intervals. Instead, offline memory consolidation may function opportunistically, occurring during either sleep or stimulus-free rest, provided a favorable neurobiological milieu and sufficient reduction of new encoding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call