Abstract

Background: Heart rate variability (HRV) and electrocardiogram (ECG)-derived respiration (EDR) have been used to detect sleep apnea (SA) for decades. The present study proposes an SA-detection algorithm using a machine-learning framework and bag-of-features (BoF) derived from an ECG spectrogram. Methods: This study was verified using overnight ECG recordings from 83 subjects with an average apnea–hypopnea index (AHI) 29.63 (/h) derived from the Physionet Apnea-ECG and National Cheng Kung University Hospital Sleep Center database. The study used signal preprocessing to filter noise and artifacts, ECG time–frequency transformation using continuous wavelet transform (CWT), BoF feature generation, machine-learning classification using support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN) classification, and cross-validation. The time length of the spectrogram was set as 10 and 60 s to examine the required minimum spectrogram window time length to achieve satisfactory accuracy. Specific frequency bands of 0.1–50, 8–50, 0.8–10, and 0–0.8 Hz were also extracted to generate the BoF to determine the band frequency best suited for SA detection. Results: The five-fold cross-validation accuracy using the BoF derived from the ECG spectrogram with 10 and 60 s time windows were 90.5% and 91.4% for the 0.1–50 Hz and 8–50 Hz frequency bands, respectively. Conclusion: An SA-detection algorithm utilizing BoF and a machine-learning framework was successfully developed in this study with satisfactory classification accuracy and high temporal resolution.

Highlights

  • Sleep apnea (SA) is a sleep disorder with high prevalence, among middleaged and elderly subjects

  • Hyperparameter optimization was performed using nested five-fold cross-validation and grid search using a 60 s time window based on the best frequency range, 8~50 Hz, and machine-learning model construction, support vector machine (SVM)

  • This paper proposed a new algorithm to classify sleep apnea (SA) patterns from ECG spectrograms

Read more

Summary

Introduction

Sleep apnea (SA) is a sleep disorder with high prevalence, among middleaged and elderly subjects. To reduce the number of undiagnosed SA patients, sleep examinations with fewer channels of physiological signals, such as type III home sleep testing (HST), have received increasing attention in recent years. The present study proposes an SAdetection algorithm using a machine-learning framework and bag-of-features (BoF) derived from an ECG spectrogram. Results: The five-fold cross-validation accuracy using the BoF derived from the ECG spectrogram with 10 and 60 s time windows were 90.5% and 91.4% for the 0.1–50 Hz and 8–50 Hz frequency bands, respectively. Conclusion: An SA-detection algorithm utilizing BoF and a machine-learning framework was successfully developed in this study with satisfactory classification accuracy and high temporal resolution

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.