Abstract

The mechanism behind poor survival of acute myeloid leukemia (AML) patients with 1-barabinofuranosylcytosine (Ara-C) based treatment remains unclear. This study aimed to assess the pharmacogenomic effects of Ara-C metabolic pathway in patients with AML. The genotypes of 19 single nucleotide polymorphisms (SNPs) of DCK, CDA and SLC29A1from 100 AML patients treated with Ara-C were examined. All the SNPs were screened with ligase detection reaction assay. The transcription analysis of genes was examined by quantitative real time polymerase chain reaction. The association between clinical outcome and gene variants was evaluated by Kaplan-Meier method. Genotypes of rs9394992 and rs324148 for SLC29A1 in remission patients were significantly different from those in relapsed ones. Post-induction overall survival (OS) significantly decreased in patients with the CC genotype of rs324148 compared with CT and TT genotypes (hazard ratio [HR] = 2.997 [95% confidence interval (CI): 1.71-5.27]). As compared with CT and TT genotype, patients with the CC genotype of rs9394992 had longer survival time (HR = 0.25 [95% CI: 0.075-0.81]; HR = 0.43 [95% CI: 0.24-0.78]) and longer disease-free survival (DFS) (HR = 0.52 [95% CI: 0.29-0.93]; HR = 0.15 [95% CI: 0.05-0.47]) as well As compared with CT and TT genotype, patients with the CC genotype of rs324148 had shorter DFS (HR = 3.18 [95% CI: 1.76-5.76]). Additionally, patients with adverse karyotypes had shorter DFS (HR = 0.17 [95% CI: 0.05-0.54]) and OS (HR = 0.18 [95% CI: 0.05-0.68]). AML patients with low activity of SLC29A1 genotype have shorter DFS and OS in Ara-C based therapy. Genotypes of rs9394992 and rs324148 may be independent prognostic predictors for the survival of AML patients.

Highlights

  • The mechanism behind poor survival of acute myeloid leukemia (AML) patients with 1-barabinofuranosylcytosine (Ara-C) based treatment remains unclear

  • Acute myeloid leukemia (AML), a heterogeneous disease with various clinical presentations, can be treated with 1-barabinofuranosylcytosine (Ara-C) or Ara-C combined with anthrocycline [1,2,3]

  • Ara-C is converted to its active triphosphate form (Ara-CTP) through a series of phosphorylation actions mediated by deoxycytidine kinase (DCK), deoxycytidylate kinase and nucleoside diphosphate kinase (NDPK) [8,9] (Figure 1)

Read more

Summary

Introduction

The mechanism behind poor survival of acute myeloid leukemia (AML) patients with 1-barabinofuranosylcytosine (Ara-C) based treatment remains unclear. The cytotoxic effect of Ara-C needs metabolic activation following transport into the cells. High-dose Ara-C diffuses into the cell at a rate higher than that of pump-mediated transport [6,7]. Ara-C is converted to its active triphosphate form (Ara-CTP) through a series of phosphorylation actions mediated by deoxycytidine kinase (DCK), deoxycytidylate kinase and nucleoside diphosphate kinase (NDPK) [8,9] (Figure 1). Ara-CTP plays its cytotoxic role by incorporating into DNA to inhibit DNA synthesis in a competitive way, resulting in leukemic cell death [10,11,12,13]. Ribonucleotide reductase (RRM), which consists of 2 subunits, could decrease Ara-C cytotoxycity by catalyzing the de novo synthesis of dNTP which could inhibit the function of DCK [15,16,17,18]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.