Abstract
Downregulated in adenoma (DRA, Slc26a3) is a member of the solute carrier family 26 (SLC26), family of anion transporters, which is mutated in familial chloride-losing diarrhoea (CLD). Besides Cl(-) -rich diarrhoea, CLD patients also have a higher-than-average incidence of intestinal inflammation. In a search for potential explanations for this clinical finding, we investigated colonic electrolyte transport, the mucus layer and susceptibility against dextran sodium sulphate (DSS)-induced colitis in Slc26a3(-/-) mice. HCO3 (-) secretory (JHCO3 (-) ) and fluid absorptive rates were measured by single-pass perfusion in vivo and in isolated mid-distal colonic mucosa in Ussing chambers in vitro. Colonocyte intracellular pH (pHi ) was assessed fluorometrically, the mucus layer by immunohistochemistry and colitis susceptibility by the addition of DSS to the drinking water. HCO3 (-) secretory (JHCO3- ) and fluid absorptive rates were strongly reduced in Slc26a3(-/-) mice compared to wild-type (WT) littermates. Despite an increase in sodium/hydrogen exchanger 3 (NHE3) mRNA and protein expression, and intact acid-activation of NHE3, the high colonocyte pH in Slc26a3(-/-) mice prevented Na(+) /H(+) exchange-mediated fluid absorption in vivo. Mucin 2 (MUC2) immunohistochemistry revealed the absence of a firm mucus layer, implying that alkaline secretion and/or an absorptive flux may be necessary for optimal mucus gel formation. Slc26a3(-/-) mice were highly susceptible to DSS damage. Deletion of DRA results in severely reduced colonic HCO3 (-) secretory rate, a loss of colonic fluid absorption, a lack of a firmly adherent mucus layer and a severely reduced colonic mucosal resistance to DSS damage. These data provide potential pathophysiological explanations for the increased susceptibility of CLD patients to intestinal inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.