Abstract

Plate tectonics is primarily driven by the constant gravitational pull of slabs where oceanic lithosphere sinks into the mantle at subduction zones. Under stable plate boundary configurations, changes in plate motion are then thought to occur gradually. Surprisingly, recent high-resolution Indian plate reconstructions revealed rapid (2–3 Million-year) plate velocity oscillations of ±50 %. We show, through numerical experiments, that the buckling of slabs in the mantle transition zone causes such oscillations. This buckling results from the deceleration of slabs as they sink into the lower mantle. The amplitude and period of buckling-associated oscillations depend on average subduction velocity and the available space in the mantle transition zone. The oscillations also affect the upper plate which may explain enigmatic observations of episodic deformation and fluid flow in subduction-related orogens. We infer that the slab pull that drives plate tectonics is generated in just the top few hundred kilometers of the mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.