Abstract

The obesity pandemic in the obstetrical population plus increased frequency of Cesarean delivery (CD) has increased vulnerability to surgical site infection (SSI). Here we characterized the microbiome at the site of skin incision before and after CD. Skin and relevant surgical sites were sampled before and after surgical antisepsis from obese (n = 31) and non-obese (n = 27) pregnant women. We quantified bacterial biomass by qPCR, microbial community composition by 16sRNA sequencing, assigned operational taxonomic units, and stained skin biopsies from incision for bacteria and biofilms. In obese women, incision site harbors significantly higher bacterial biomass of lower diversity. Phylum Firmicutes predominated over Actinobacteria, with phylotypes Clostridales and Bacteroidales over commensal Staphylococcus and Propionbacterium spp. Skin dysbiosis increased post-surgical prep and at end of surgery. Biofilms were identified post-prep in the majority (73%) of skin biopsies. At end of surgery, incision had significant gains in bacterial DNA and diversity, and obese women shared more genera with vagina and surgeon’s glove in CD. Our findings suggest microbiota at incision differs between obese and non-obese pregnant women, and changes throughout CD. An interaction between vaginal and cutaneous dysbiosis at the incision site may explain the a priori increased risk for SSI among obese pregnant women.

Highlights

  • Medical, quality of care and financial incentives have generated pressure to reduce surgical site infection (SSI) rates for all surgical specialties[7]

  • Excess bacteria from the Pfannenstiel area of obese woen may have been displaced to the mid-abdomen since this site and surgical scrub showed a significant gain in bacteria immediately following antisepsis

  • We demonstrated a considerable surge in bacterial DNA load on the surgeon’s glove, and the Pfannenstiel incision at the end of surgery both in obese (2.4-fold) and non-obese (3.3-fold) women

Read more

Summary

Introduction

Quality of care and financial incentives have generated pressure to reduce SSI rates for all surgical specialties[7]. Among universally effective strategies were the standardization of protocols for skin preparation and antisepsis and for use of preoperative antibiotics[8,9]. Despite their adoption in obstetrics, 6–10% of CDs continue to develop SSIs7,10,11. Given the correlation between increasing body weight and higher risk for SSI, it was reasonable to propose that in obese pregnant women the anatomical characteristics of the panniculus fold create a unique microbiologic environment To address this gap in knowledge we measured the bacterial biomass and microbial diversity and assessed for resence of biofilms in obese versus non-obese pregnant women. We further examined the effectiveness of a universally-recognized preoperative antisepsis protocol[17] on commensal colonization at surgically relevant cutaneous sites prior to and after delivery of the newborn

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.