Abstract

One of the most common types of human malignancies is skin cancer, which is chiefly diagnosed visually, initiating with a clinical screening followed by dermoscopic analysis, histopathological assessment, and a biopsy. Due to the fine-grained differences in the appearance of skin lesions, automated classification is quite challenging through images. To attain highly segregated and potentially general tasks against the finely grained object categorized, deep convolutional neural networks (CNNs) are used. In this paper, we propose a new prediction model that classifies skin lesions into benign or malignant lesions based on a novel regularizer technique. Hence, this is a binary classifier that discriminates between benign or malignant lesions. The proposed model achieved an average accuracy of 97.49%, which in turns showed its superiority over other state-of-the-art methods. The performance of CNN in terms of AUC-ROC with an embedded novel regularizer is tested on multiple use cases. The area under the curve (AUC) achieved for nevus against melanoma lesion, seborrheic keratosis versus basal cell carcinoma lesion, seborrheic keratosis versus melanoma lesion, solar lentigo versus melanoma lesion is 0.77, 0.93, 0.85, and 0.86, respectively. Our results showed that the proposed learning model outperformed the existing algorithm and can be used to assist medical practitioners in classifying various skin lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.