Abstract

The use of bionic non-smooth surfaces is a popular approach for saving energy because of their drag reduction property. Conventional non-smooth structures include riblets and dimples. Inspired by sand dunes, a novel variable ovoid nonsmooth structure is proposed in this study. The body of the variable ovoid dimple was designed based on three size parameters, the radius, semimajor, and depth, and a 3D model was created based on UG software. The constructed variable dimples were placed in a rectangular array on the bottom of a square tube model. Following ANSYS meshing, the grid model was imported into FLUENT, where the flow characteristics were calculated. Results of skin friction reduction were achieved and the effect of the design parameters on different variable ovoid dimples was obtained by orthogonal testing. Various aspects of the skin friction reduction mechanism were discussed including the distribution of velocity vectors, variation in boundary layer thickness, and pressure distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.