Abstract

Abstract Expansion of the tropics will likely affect subtropical precipitation, but observed and modeled precipitation trends disagree with each other. Moreover, the dynamic processes at the tropical edge and their interactions with precipitation are not well understood. This study assesses the skill of climate models to reproduce observed Australian precipitation variability at the tropical edge. A multivariate linear independence approach distinguishes between direct (causal) and indirect (circumstantial) precipitation drivers that facilitate clearer attribution of model errors and skill. This approach is applied to observed precipitation and ERA-Interim reanalysis data and a representative subset of four models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and their CMIP3 counterparts. The drivers considered are El Niño–Southern Oscillation, southern annular mode, Indian Ocean dipole, blocking, and four tropical edge metrics (position and intensity of the subtropical ridge and subtropical jet). These models are skillful in representing the covariability of drivers and their influence on precipitation. However, skill scores have not improved in the CMIP5 subset relative to CMIP3 in either respect. The Australian precipitation response to a poleward-located Hadley cell edge remains uncertain, as opposing drying and moistening mechanisms complicate the net response. Higher skill in simulating driver covariability is not consistently mirrored by higher precipitation skill. This provides further evidence that modeled precipitation does not respond correctly to large-scale flow patterns; further improvements in parameterized moist physics are needed before the subtropical precipitation responses can be fully trusted. The multivariate linear independence approach could be applied more widely for practical model evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.