Abstract
Let T 3 be the three-rowed strip. Recently Regev conjectured that the number of standard Young tableaux with n − 3 entries in the “skew three-rowed strip” T 3 / ( 2 , 1 , 0 ) is m n − 1 − m n − 3 , a difference of two Motzkin numbers. This conjecture, together with hundreds of similar identities, were derived automatically and proved rigorously by Zeilberger via his powerful program and WZ method. It appears that each one is a linear combination of Motzkin numbers with constant coefficients. In this paper we will introduce a simple bijection between Motzkin paths and standard Young tableaux with at most three rows. With this bijection we answer Zeilberger's question affirmatively that there is a uniform way to construct bijective proofs for all of those identities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.