Abstract
The positive predictive value (PPV) and negative predictive value (NPV) can be expressed as functions of disease prevalence ( ) and the ratios of two binomial proportions ( ), where and . In prospective studies, where the proportion of subjects with the disease in the study cohort is an unbiased estimate of the disease prevalence, the confidence intervals (CIs) of PPV and NPV can be estimated using established methods for single proportion. However, in enrichment studies, such as case-control studies, where the proportion of diseased subjects significantly differs from disease prevalence, estimating CIs for PPV and NPV remains a challenge in terms of skewness and overall coverage, especially under extreme conditions (e.g., ). In this article, we extend the method adopted by Li, where CIs for PPV and NPV were derived from those of . We explored additional CI methods for , including those by Gart & Nam (GN), MoverJ, and Walter and convert their corresponding CIs for PPV and NPV. Through simulations, we compared these methods with established CI methods, Fieller, Pepe, and Delta in terms of skewness and overall coverage. While no method proves universally optimal, GN and MoverJ methods generally emerge as recommended choices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.