Abstract
Analogs of the classical Sylvester theorem have been known for matrices with entries in noncommutative algebras including the quantized algebra of functions on GL N and the Yangian for $$ \mathfrak{g}\mathfrak{l}_{{N}} $$ . We prove a version of this theorem for the twisted Yangians $$ {\text{Y(}}\mathfrak{g}_{N} {\text{)}} $$associated with the orthogonal and symplectic Lie algebras $$ \mathfrak{g}_{N} = \mathfrak{o}_{N} {\text{ or }}\mathfrak{s}\mathfrak{p}_{N} $$. This gives rise to representations of the twisted Yangian $$ {\text{Y}}{\left( {\mathfrak{g}_{{N - M}} } \right)} $$ on the space of homomorphisms $$ {\text{Hom}}_{{\mathfrak{g}_{M} }} {\left( {W,V} \right)} $$, where W and V are finite-dimensional irreducible modules over $$ \mathfrak{g}_{{M}} {\text{ and }}\mathfrak{g}_{{N}} $$, respectively. In the symplectic case these representations turn out to be irreducible and we identify them by calculating the corresponding Drinfeld polynomials.We also apply the quantum Sylvester theorem to realize the twisted Yangian as a projective limit of certain centralizers in universal enveloping algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.