Abstract

The derivation of loss distribution from insurance data is a very interesting research topic but at the same time not an easy task. To find an analytic solution to the loss distribution may be misleading although this approach is frequently adopted in the actuarial literature. Moreover, it is well recognized that the loss distribution is strongly skewed with heavy tails and presents small, medium and large size claims which hardly can be fitted by a single analytic and parametric distribution. Here we propose a finite mixture of Skew Normal distributions that provides a better characterization of insurance data. We adopt a Bayesian approach to estimate the model, providing the likelihood and the priors for the all unknown parameters; we implement an adaptive Markov Chain Monte Carlo algorithm to approximate the posterior distribution. We apply our approach to a well known Danish fire loss data and relevant risk measures, such as Value-at-Risk and Expected Shortfall probability, are evaluated as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.