Abstract

A self-organizing neural network model is proposed to generate the skeleton of a pattern. The proposed neural net is topology-adaptive and has a few advantages over other self-organizing models. The model is dynamic in the sense that it grows in size over time. The model is especially designed to produce a vector skeleton of a pattern. It works on binary patterns, dot patterns and also on gray-level patterns. Thus it provides a unified approach to skeletonization. The proposed model is highly robust to noise (boundary and interior noise) as compared to existing conventional skeletonization algorithms and is invariant under arbitrary rotation. It is also efficient in medial axis representation and in data reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.