Abstract

In this paper, we claim that a common underlying structure--a skeleton structure--is present behind discrete-time quantum walks (QWs) on a one-dimensional lattice with a homogeneous coin matrix. This skeleton structure is independent of the initial state, and partially, even of the coin matrix. This structure is best interpreted in the context of quantum-walk-replicating random walks (QWRWs), i.e., random walks that replicate the probability distribution of quantum walks, where this newly found structure acts as a simplified formula for the transition probability. Additionally, we construct a random walk whose transition probabilities are defined by the skeleton structure and demonstrate that the resultant properties of the walkers are similar to both the original QWs and QWRWs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.