Abstract

In different circumstances such as infant malnutrition, old age or chronic disease, decline of muscular strength, particularly anaerobic power, is shown. In this context, our laboratory, has demonstrated a decrease in anaerobic glycolytic power in pre-pubertal Bolivian children living at low and high altitude and suffering from marginal protein malnutrition. To bring molecular support to the relationship between protein malnutrition and anaerobic glycolytic metabolism, we studied the impact of prolonged protein malnutrition on lactate metabolism in different muscles of growing rats. Lactate dehydrogenase (LDH), monocarboxylate transporters (MCT1, MCT4) and membrane protein CD147 were chosen as specific markers of anaerobic glycolytic metabolism. Two groups of 10 weaning male rats were fed for 10 weeks either ad libitum with a well-balanced diet containing 18% protein or an isocaloric-diet containing 8% protein. LDH activity and mRNA amounts of LDH isoforms, MCT, CD147 were measured. Protein deprivation during rat growth induced a decrease of LDH specific activity in skeletal muscles (mean value of -41%), accompanied by isoform distribution modifications in soleus, but not in glycolytic muscles (extensor digitorum longus (EDL) or plantaris). A reduction in mRNA amounts encoding the LDH A and B subunits was observed in EDL. A decrease in LDH B mRNA amounts was monitored in plantaris, whereas no modification in both LDH isoform mRNA quantities was observed in soleus. MCT1 mRNA quantities were decreased in EDL but MCT4 mRNA quantities remained stable. CD147 mRNA amounts were unchanged except for EDL with a 42% increase. The global decreases of LDH activity, LDH and MCT gene expressions in growing rat skeletal muscles support the observed alterations of lactate metabolism associated with lowered muscular anaerobic performances in protein malnutrition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.