Abstract

The recently developed flower pollination algorithm is used to minimize the weight of truss structures, including sizing design variables. The new algorithm can efficiently combine local and global searches, inspired by cross-pollination and self-pollination of flowering plants, respectively. Furthermore, it implements an iterative constraint handling strategy where trial designs are accepted or rejected based on the allowed amount of constraint violation that is progressively reduced as the search process approaches the optimum. This strategy aims to obtain always feasible optimized designs. The new algorithm is tested using three classical sizing optimization problems of 2D and 3D truss structures. Optimization results show that the proposed method is competitive with other state-of-the-art metaheuristic algorithms presented in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.