Abstract

Contrast thresholds for 75% correct depth identification in narrow-band filtered random dot stereograms were determined for different center spatial frequencies and binocular disparities. Rigorous control over vergence was maintained during testing, and a forced-choice procedure was used. The resulting contrast sensitivity function for stereopsis revealed sensitivity over a greater range of disparities at low than at high spatial frequencies. Sensitivity peaked for large disparities at low spatial frequencies and for small disparities at high spatial frequencies. When disparities were converted to effective binocular phase differences, the variation of contrast sensitivity with phase followed a consistent pattern across spatial frequencies, with peak sensitivity occurring mainly for binocular phases of between 90 degrees and 180 degrees. These results have implications for the extent of spatial integration at the input to the disparity sensing mechanism. A model postulating a spread of positional disparities independent of the spatial frequency selectivity of disparity-sensitive units cannot account for the results. But the size-disparity correlation strongly evident in our data is predicted by certain models of stereopsis, such as phase disparity encoding. An ideal observer analysis is developed that demonstrates that our results were not forced by the nature of the stimulus employed; rather, the quantum efficiency for stereopsis at contrast threshold follows the size-disparity correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.