Abstract

The luminous efficiency and lifetime of plasma display panels (PDPs) are directly related to the performance of phosphors used in PDPs, thus higher efficiency, higher stability against high temperature processes, and a long lifetime along with good color chromaticity against vacuum-ultraviolet radiation are major concerns in selecting suitable phosphors for PDPs. In the same pursuit, well crystallized pure hexagonal phase YBO3:Tb3+ nanocrystals were prepared using co-precipitation method. The prepared YBO3:Tb3+ nanocrystals showed bright green luminescence, color chromaticity (0.21, 0.61), and could be assigned to 5D4→7Fj transitions (j = 2-6) due to electric dipole–dipole interaction of Tb3+ ions. The vacuum ultraviolet photoluminescence spectroscopy of the prepared YBO3:Tb3+ nanocrystals showed size dependent nonlinear luminescence enhancement with relatively shorter life time as compared to the commercial bulk YBO3:Tb3+ phosphor. The quenching concentration of Tb3+ doping for (5D4→7F5) transition was found significantly enhanced with the decrease in particle size suggesting it an ideal green phosphor for plasma display panels. The possible explanation for size-dependent emission efficiency and observed luminescence characteristics were proposed via charge transfer process and lowering of the structural symmetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.