Abstract

Abstract In the present work, a new Kirchhoff plate model is developed using a modified couple-stress theory to study the bending behavior of nano-sized plates, including surface energy and microstructure effects. The surface elasticity theory of Gurtin and Murdoch is used to model the surface energy effects, into the framework of the modified couple-stress theory of elasticity. Newtonian continuum mechanics approach is used to derive the differential form of the equilibrium equations for the modified Kirchhoff plate theory. The modified plate rigidity is derived to express the size effects in nanoplates. Presence of a length scale parameter, in the context of the modified couple-stress theory, enables us to express the size effect in nano-scale structures. In addition, an intrinsic length scale parameter is determined as a result of taking surface energy effects into account. In order to illustrate the model, an analytical solution of the static bending of a simply supported nano-plate has been derived. For ultra-thin plates it is noticed that the microstructure effects on bending rigidity and deflection, through the application of the modified-couple stress theory, is highly significant than that caused by the surface energy effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.