Abstract
By analyzing the limitations that achromatic gradient-index (GRIN) lens solutions in the radial and axial extremes place on lens thickness and surface curvature, a radial-axial hybrid GRIN theory is developed in order to overcome these restrictions and expose a larger solution space. With the achromatic hybrid GRIN theory, the trade-offs between thickness, curvature, and GRIN type can be directly studied in the context of size, weight, and power (SWaP) reduction. Finally, the achromatic solution space of a silicon-germanium-based material system is explored, and several designs are verified with ray tracing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.