Abstract

For applications in tissue engineering and regenerative medicine, embryonic stem cells (ESCs) are commonly pre-differentiated in the form of embryoid bodies (EBs). The uncontrolled cell differentiation in EBs results in a highly heterogeneous cell population, an unfavourable condition for therapeutic development. The purpose of this study was to determine an optimal size of EBs for chondrogenic differentiation. EBs were produced in suspension culture with mouse ESCs (ES-D3 GL). The 5-day-old EBs were sorted under a microscope by diameter: small EBs (S-EBs, < 100 microm), medium EBs (M-EBs, 100-150 microm) and large EBs (L-EBs, > 150 microm). The three sizes of EBs were cultured separately for 3 weeks in chondrogenic medium. Type II collagen and aggrecan gene expression was significantly upregulated in the S-EBs, when compared with the M-EBs and L-EBs (p < 0.05 and p < 0.001, respectively). Proteoglycans produced by the cells derived from S-EBs were > 50% of the other two groups. In addition, both Oct4 and Sox2 were expressed more in S-EBs than in M-EBs and L-EBs. Type X collagen expression was relatively increased in L-EBs. Slight shifts toward haematopoietic and endothelial differentiation were seen in the L- and M-EBs. In summary, the size of EBs has implications on ESC differentiation. Cells derived from S-EBs have a greater chondrogenic potential than those from M-EBs and L-EBs. The size of EBs can be a parameter utilized to optimize ESC differentiation for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.