Abstract

Developing an effective separation method is necessary for identifying low-abundant endogenous phosphorylated peptides with the removal of proteins. In this work, we prepared size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls (denoted as Ti(4+)-MGMSs) for capturing endogenous phosphorylated peptides for mass spectrometry analysis. The introduction of hydrophilic polydopamine simplified the synthetic process of Ti(4+)-MGMSs, and the ordered mesoporous channels are beneficial to the trapping of endogenous phosphopeptides while large-size proteins are excluded. Furthermore, the magnetic performance greatly simplifies the entire process of enrichment. With all of the advances, the novel Ti(4+)-MGMSs present high enrichment efficiency either from the low concentration of β-casein tryptic digest (0.5 fmol/μL) or the mixture of β-casein tryptic digest and α-casein (or plus bovine serum albumin, with a mass ratio up to 1:500). Besides, Ti(4+)-MGMSs have also been successfully applied to enrich endogenous phosphorylated peptides from human serum and human saliva.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.