Abstract
Cellular materials possess size-dependent mechanical behavior. This work examines the causes of these size effects in periodic thin-walled cellular materials, modeled as a network of beam elements. The literature has attributed stiffening size effects to the local beam bending behavior of these materials; there is an additional stiffness connected to the rotation of the beam nodes at lattice vertices that causes a stiffening size effect. This work decomposes the strain energy of the beams in the lattice into energy from axial stretching and beam bending and shows that size effects are connected to bending strain energy in certain situations. Other literature has shown a softening size effect in stochastic foams caused by damaged or incomplete cells on free surfaces. This work uses a strain map of the lattice model along with the micropolar constitutive law to show that these edge softening effects can appear in periodic cellular materials when surface cells are neither damaged nor incomplete. This edge softening effect is due to the truncation of repeated unit cells found in the interior of the body. This effect is only observed for certain lattice topologies and is quantified and connected to a global size effect. In conjunction with the beam bending size effect, this edge effect is able to explain the origin of size effects for a variety of lattice topologies and boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.